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In this paper, we focus on the timing analysis of a fault-tolerance technique when a
program is written in the form of several modules. If a hardware failure does occur
during the ith module execution, the program must roll back and after restoring, the ith
module execution is repeated. All random variables, such as time to hardware failure,
replication time, and execution time of modules are arbitrarily distributed. We propose
the efficient recurrence algorithms for computing the probability distribution and the
mean value of execution time. The asymptotic behavior of the fault-tolerance technique
is discussed. We prove that by increasing the number of modules, the mean execution
time of a module tends to a defined value. The numerical examples are provided to
illustrate and analyze the results. The application examples show that for the large
variety of systems there exists an optimal number of modules minimizing the execution
time.

Keywords: Software Fault Tolerance; Execution Time; Fuzzy Time; Recurrence
Algorithm.

1. Introduction

There exist various techniques to protect a computer system from the consequences
of hardware and software faults.! Let us consider one of them. Suppose that a
program is written in the form of n modules. The output of each module is stored
for its possible recursive usage in future. If a hardware failure does occur during
the ith module execution, the program must roll back and after restoring, its ith
module execution is repeated. Here we assume that only hardware failures can occur
and detection of a failure is simultaneous. This fault-tolerance technique is well
known and several authors have analyzed its reliability behavior.? It may be used
in various types of computer systems: communications, database systems, real-time
process-control systems. However, the most of the considered models describing the
fault-tolerant techniques assume that the random time to failure and execution time
are governed by the exponential distribution. This condition restricts their actual
application. Therefore, in this paper we analyze the fault-tolerance technique under
condition that all random variables, such as time to hardware failure, time to repair,
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98 S. V. Gurov, L. V. Utkin & I. B. Shubinsky

and execution time (ET) of modules are arbitrarily distributed. Moreover, ETs of
modules depend on initial data and generally may be unknown. In this case, we
consider a fuzzy description® of ETs. Thus, the reliability behavior of the software-
hardware system is defined by the following factors:

(1) The number of modules in the program.

(2) ETs of modules as random or fuzzy variables.
(3) Failure mode of the hardware.

(4) Time to repair as random variable.

An application of fault-tolerance techniques can cause an increase of the ET.
Note that the ET is an important consideration for real-time systems because the
reliability of such the systems depends on their ability to meet the critical task
deadlines.* Moreover, there exist optimal values of n for some systems which mini-
mize the mean execution time (MET) and these optimal values can be obtained by
means of analyzing the ET. The ET is a random variable. Therefore, we study the
basic probability characteristics of the ET. In order to investigate the behavior of
the fault-tolerance technique by a large number of modules we analyze the asymp-
totic properties of the MET. Thus, in the paper we consider the following measures
of system performance:

(1) Probability distribution of execution time.
(2) MET.

(3) Fuzzy MET.

(4) Asymptotic MET of one module.

The purposes of this paper are to propose efficient algorithms for computing
above measures under general assumptions and to show how to reduce the MET by
means of the optimal choice of the value n.

In Sec. 2 we consider the state transition and time diagrams of the analyzed
system. The methods for computing the probability distribution and the mean
value of the ET are provided in Sec. 3. In Sec. 4 we analyze a case when n — oo.
The MET under condition of the fuzzy ETs of modules is studied in Sec. 5. The
applications of proposed methods to communications, database systems, and real-
time process-control systems are considered in Sec. 6. Appendix contains the proof
of the basic results. We will denote

pdf, Cdf,sf probability density, distribution, survivor functions, respectively;

f(t),F(t),F(t), Ty pdf, Cdf,sf, expectation of time to hardware failure, respec-
tively;

g(t),G(t),G(t), T, pdf, Cdf,sf, expectation of time to repair, respectively;

hi(t), Hi(t), Hi(t), T; pdf, Cdf, sf, expectation of the ith module ET, respectively;
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1.4(z) membership function of the fuzzy set A;

fo(t) = f(t +8);

* convolution symbol f * g(t) = f; flw)g(t — w)du;

F*1(t) = [y f(u)du;
F*®)(t) k-fold convolution of the function f(t).

2. The State Transition and Time Diagrams

Suppose a program consists of n modules, i.e., there are n stages of its execution.
The output data of the ith module are used as the input data of the (i + 1)th
module. We assume that ETs of all the modules are independent random variables
with the pdf h;(t), i = 1,...,n. The hardware may fail and repair. Let the time to
hardware failure and time to hardware repair be random variables having pdf f(¢)
and g(t), respectively.

A state transition diagram of the system is given in Fig. 1. The system can be
in one of the following states:

k,k=1,2,...,n: hardware is in operating state and kth module of the program
is executed;

k, k=1,2,...,n: hardware is under repair and the program is stopped (in idle
state) during the kth module execution;

n+1: the program completes.

An example of a time diagram of the system is given in Fig. 2, where the following
time instances are depicted: (1) first module completes; (2) first hardware failure
occurs; (3) repair completes and second module is repeated; (4) second hardware
failure occurs; (5) repair completes and second module is repeated; (6) second
module completes.

Let pi(t) and pg(t) be the probabilities that the system is in states k and k
at time t, respectively. The probability that the program completes during time
interval [0, ¢] is defined as

F(t) = zﬂ: 5(®) = Prsa(t). (1)
k=1

Let Tk, T3 be the mean sojourn times in kth and kth states, respectively, and
T be the MET of the program. Then

Ty = / pr(t)dt, Ty = /0 pr(t)dt, T = (T + Tf) . (2)

Jo k=1
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Fig. 1. The state transition diagram of the system.
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Fig. 2. An example of the time diagram.

3. Reliability Measures
In this section we consider the probability distribution of the ET and MET.

Result 1. Denote -
o) = 3 (FH)™ x g0 (1) . (3)
j=0
Then the state probabilities of the system can be computed as

k
Pk(t)=Zai*(Fhi*"‘*hk_l*ﬁk)(t), k:l}”'snr (4)
=1
k e
p®) =G aix (fhix---xheyxHe)(t), k=1,...,n, (5)
t=1
k —
Pri1(t) = aix (Fhix---xhy) % 1(t). (6)
=1

Here the function ax(t) is recurrently determined from a;(t) = Ek(tj and

k-1
ar(t) =@exg* Y ai(fhix-xhp_y » He)(t). (7)

=1

The proof of Result 1 can be found in the Appendix. By using Egs. (1) and
(3)—(7), we obtain the probability distribution of the ET. The main difficulty in com-
putation of F'(t) is expression (3) because of the infinite number of terms. However,
the time to hardware failure is much more than the duration of one stage in various
cases. Therefore, (fHy)*Y) — 0 as j — oo. This implies that for approximate
computing (3) we should calculate only the some terms.
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Now consider the MET T'. It can be computed by means of a simple recurrence
algorithm.

Result 2. The MET T is computed as follows:

r=Ya [ F+THOF O, ®)
i=1 0
where "
F(‘)(t) =1- / hi* -+ % hyp(7)dr,
0
values @y, k = 1,2,...,n, are recurrently determined from expressions

_ i |
a = 3]
fhee [0 F(OH (t)dt

k-1 "
ZE‘j/ f(t)h';* '”*hk—l *Ek(t)dt
i=1 0

=l

9)

k=

1 /0 F(O T x(t)dt

The proof of Result 2 can be found in the Appendix. From Eq. (8), we can
see that the value of T is independent of the distribution of time to repair and is
determined only by the expectation T;.

Let us consider a special case when hg(t) = 4z, (t), where d,, () is the standard
impulse function: it has unit area concentrated in the immediate vicinity of ¢t = zy.
Then there holds

1, iftelm+-+zp-1, Tit +zp-1+ k],
0, otherwise.

h,; L SRR hk_lﬁk(t) = {

Therefore, it follows from Eq. (9) that

- 1
a ==
: F(:::l)’
k-1
ﬁk=ZﬁiF($‘+ o @) — Py + ot Tkt ak)

F(xx)

Denoting ®(t) = [;° F(z + t)dz and using Eq. (8), we obtain
m
Z (To+T, — (B + T F)(zi + -+ +2a)). (10)

Thus, we have obtained extremely simple recurrence expressions for computing 7.
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4. An Asymptotic Property
Let us consider the following ratio:

_ mean execution time T
=

number of modules n |

We can show that under some conditions, there exists the following limit:

t= lim %,.
Result 3. If ETs of all the modules are independent random variables with the
identical pdf h(t) and with expectations t, then there holds

E o T[] + Tr
f S 10 (2)F(z)dz
Lt

Result 3 implies that by increasing the number of modules, the MET of each
module is constant and cannot be decreased.

Example. Let us determine how the ratio ¢, depends on the value n under the
following conditions:

— number of modules n = 1 + 200;

— execution time of each module is equal to 5;

— time to system failure has the gamma distribution with the scale parameter
A = 0.05 and fixed shape parameters k = 5 and 10;

— time to repair is arbitrarily distributed with the expectation T, = 1.

Figure 3 illustrates the functions , versus n for different values of k. Note that
the function 7, tends to the steady-state value . If k = 5, then t = 5.179. If k = 10,
then ¢ = 5.088.

518 : k=5
1 k=10
5.00

1 n 200

Fig. 3. The illustration of the steady-state behavior of T,.
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5. Fuzzy Execution Time

In previous sections, we assumed that ETs of modules are random or deterministic.
Now we consider a case when ETs of modules are fuzzy numbers with the member-
ship functions p;(z), i = 1,...,n. Obviously, in this case the MET of the program
is a fuzzy number T. In accordance with Zadeh’s extension principle®, we can write
the membership function of the fuzzy MET as follows:

pr(u) = sup { min pu;(z;)|T(x1,22,...,Tn) = u} ; (11)

xlzu‘"_‘znzo I:l,...,ﬂ.

Here T(zy,x2,...,2,) is a value of the MET under condition that ETs of mod-
ules are deterministic and equal z1, z2, ..., T,, respectively. Thus, the values T'(z1,
T2,...,Tn) are determined by means of Eq. (10). It should be noted that compu-
tation of p7(u) by means of Eq. (11) is an extremely difficult problem. Therefore,
we need another way to compute pg(u).

Note that T'(xy,x2,...,2y) is the nondecreasing function of variables z;, i =
1,...,n. This implies that we can use a method of a-cut intervals® for computing
pr(u). Denote
z,. = inf{z|pi(z) > a}, z$ =sup{z | pi(z) = a}, i=1,...,n,

w = inf{u|pr(u) > a}, T} = sup{u|ur(u) > a}, a € [0,1].
According to the method of a-cut intervals, we can write
T = Tl ytanh B (s B ) (12)

Hence
pr(Ty) = o, pr(Ty) =a.

Further application of the fuzzy ET depends on a specific problem. If we compare
two systems, we can use algorithms for ranking fuzzy numbers based on ranking
indices.® One of the most accurate in results and efficient in computation algorithms
is presented by Tseng and Klein.® If we have to estimate one system, then a crisp
value of the fuzzy ET can be found by using algorithms of the defuzzification.
Two of the more common techniques of the defuzzification are the “centroid” and
“maximum” methods. In the centroid method, the crisp value of a fuzzy number is
computed by finding the value of the center of gravity of the membership function.
In the maximum method, one of the values at which the membership function of
the fuzzy number has its maximum value is chosen as the crisp value. To choose a
system having a higher degree of satisfying a real-time constraint, we must compare
fuzzy execution time with a crisp value of the constraint. This is a special case of
comparing the fuzzy numbers when one number is nonfuzzy. Then, the value of an
ranking index can be considered as a degree of satisfying the real-time constraint.
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6. Application Examples

Example 1. Let us consider a communication system as a component of a tele-
phone network. The transmission speed of the system equals 9600 bit/second. A
transmitted message has the size 351.56 kb. Suppose that the channel is ideal
without the transmission link and switch failures. Then the required transmission
time for the message equals 300 s. The message can be transmitted as a single
block and can be split into n blocks which are consecutively transmitted as sepa-
rate messages. However, due to a control token and a self-synchronizing code, the
transmission time of each block increases on At (s). If a failure of the system occurs
during transmission, then the currently transmitted block is sent again. The time
to system failure has the gamma distribution with the scale parameter A = 0.05 s~!
and the fixed shape parameter k = 5. The mean time to restore the communication
process equals 1 s. Figure 4 shows curves of the mean transmission time T versus
the number of blocks n for various values of At(At = 0.05, At = 0.1, At = 0.2).
We can see that all the curves in Fig. 4 have a minimum point. Therefore, there
exists an optimal value nypy minimizing the mean transmission time. If we choose
T = Nopt, We obtain desired results (see Table 1). From Table 1, we conclude that
the small variation of the control token and self-synchronizing code sizes may cause
significant changes in the structure of the message.

Example 2. To illustrate the resultant fuzzy MET we consider two real-time
process-control systems. The programs of first and second systems consist of n; =
10 and ny = 5 subprograms, respectively. The time to hardware failure has the
gamma distribution with the scale parameter A = 0.001 s~! and the fixed shape

336 -

1at= 0.2
T
At= 0.1
A —qAt=10.05
310
20 150

Fig. 4. The mean transmission time versus n for different At.

Table 1. The values of ngpt
and T versus Af.

At, (s) Nopt T, (s)
0.05 90 311.7
0.1 64 315.6

0.2 46 321.3
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Fig. 5. The membership functions of the fuzzy execution time.

Table 2. The values of nopt and T

versus A.

A, 81 Nopt T, s
0.001 1 27.2728
0.005 18 27.2934
0.01 35 27.3286

parameter k = 2, the time to repair is arbitrarily distributed with the expectation
T, = 10 s. Let pi(z;) = exp(—(z — 5)?) and p;(z;) = exp(—(z — 10)?) be the
membership functions of the fuzzy ith subprogram ETs for first and second systems,
respectively. There is the real-time constraint of 56 s. We should choose the system
which reduces the risk that the program will not be completed within the real-
time constraint. Figure 5 shows the membership functions of the fuzzy ETs for
system 1 (curve 1) and system 2 (curve 2). By using the index of Tseng and Klein®,
we obtain the degree of satisfying the real-time constraint 0.294 and 0.767 for the
second system. This implies that the second system is more acceptable.

Example 3. Let us consider a database system. The database with the size
60000 kb is stored on a hard disk QUANTUM TRB850A working on IBM PC
with the data transfer rate 2200 kb/s. This database can be implemented as one
or more files. Each file contains a descriptor word index with the size 0.8 kb. How
many files nypg should be created to minimize the mean time of reading the database
under condition that the time to hardware failure has the gamma distribution with
the scale parameter A and the fixed shape parameter k = 2, the time to repair is
arbitrarily distributed with the expectation 7. = 1s? The computational results
are shown in Table 2.

7. Conclusion

In this paper, we have proposed the method for analyzing the well-known fault-
tolerant technique by arbitrarily distributed random time to hardware failure, time
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to hardware repair, and execution time of a program. As such the steady-state
characteristic as the MET can be computed by means of the very simple algorithm.
The simplicity of this algorithm allows us to analyze the fault-tolerant technique
when ETSs of modules are fuzzy numbers.

In addition, the following conclusion can be made:

e The MET is independent of the distribution of time to hardware repair and is
determined only by its expectation.
e By increasing the number of modules, the mean execution time of a module tends

to a steady-state value,
e For various system, there exists an optimal number of modules minimizing the

MET.
e The fuzzy reliability of the system can be computed by means of the simple
method of a-cut intervals.

As we have seen from the application examples the use of the proposed method
concerning the software can be extended on the communication and database sys-
tems. It should be noted that the considered model of the fault-tolerant technique
and the proposed method do not take into account the various features of the
hardware-software systems. However, they can be regarded as a tool for the pre-
liminary evaluation and development of the optimal fault-tolerant technique. At
the same time, further study is needed to develop efficient methods for analyzing
reliability of complex systems by more realistic assumptions.

Appendix: The Proof of Results

Lemma 1. The following equality is valid:
t
[ H@ax (@fria)(t =2z = as 9+ hFO).
Proof. By using the definition of the convolution, we obtain

[ h@as @tera)e -2z = [h@) [ al@latt —a - @)fu(t — a)dads
0 0 0

= / a(a)fs(t — a}da/ h h(z)g(t —x — a)dz
0 0

=ax(g*hfs)(t),
as was to be proved. O

Theorem 1. The equation

y(s0,8,t) = /ﬂ (fsohs) * g(z) /ooo y(0, s,t — x)dsdz + ¢(so, s, 1) (A.1)
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has the following solution

Y(80,8,t) = (fsohs) *@ * g * /m ©(0, s,t)ds + ¢(s0,8,t), (A.2)
0
where
@(t) =Y (fFH)'D +g*9(t). (A3)
i=0

Proof. Let us write Eq. (A.1) in the following form:

y(so,s,t) = (fsohs) x g * Z(t) + ¢(s0,8,t) 5 (A4)

where z(t) = [, (0, s,t)ds. Then, it follows from Eq. (A.4) that

2(t) = (fH) x g * z(t) + /:Q (0, s,t)ds.

By using Eq. (A.3), we obtain

2(t) =w* fom ©(0, s,t)ds.

By substituting the function z(¢) into Eq. (A.4), we arrive at Eq. (A.2). O

Proof of Result 1. Let yx(so, s,t) be the pdf that the system is in kth state at
time ¢. Here sg is the residual time to failure, s is the residual kth module ET. Let
y5(70,t) be the pdf that the system is in kth state at time ¢t. Here 7q is the residual
time to repair. Let yn4+1(s0,t) be the pdf that the system is in (n + 1) th state at
time ¢t. Here sq is the residual time to failure. These functions satisfy the following
system of integral equations”®:

( v1(s0, 8,t) = [) f(x + so)hi(z + 8)y7(0,t — x)dx + f(t + so)ha(t + ),
Yk(s0, 8,t) = /; f(z + so)hi(x + 8)yg(0,t — x)dx

t
{ +f hi(z + 8)yk—1(z + 80,0,t — x)dz, k=2:3 o0
0

t o ]
yg(70,t) = [ g(z +'rg)/ yk(0,s,t — z)dsdz, k=12....n,
0 0

t
Yn+1 (Sﬂr t) = / yn(si}) 01 b= :I.')dI "
% 0
(A.5)
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Then, the state probabilities are computed as follows:

®= [ [ weloositidsods, k=1, (A6)
o Jo
o0
p;(t):/ y5(70,t)d7o, k=1vms (A.7)
0
o0
pn+1(t)=/ Yn+1(80,t)dsods . (A.8)
0

By eliminating from Eq. (A.5) equations corresponding to failed states, and by using
Theorem 1, we obtain after simplification

v1(s0,8,t) = (fsoh1,s) ¥ W1 (t) (A.9)

) A
slagiat)= / Bkl &)y ok 0p, 0t )
0

t
+ b emagn [ Ml il ks,
0
k=23,....,n. (A.10)

Expressions (A.9) and (A.10) are recurrence relations for computing functions
Yk(s0,8,t), k = 1,2,...,n. Let us obtain a more simple form of expressions (A.9)
and (A.10). Introduce functions

wi(t), if k=15
w,,*g*f Hi(z)yp—1(z,0,t —z)de, ifk=2,...,n.
0
Then, expressions (A.9) and (A.10) can be rewritten as follows:
)| (8(], 8y t) gL (fsﬂ hl‘s)(t) ’ (AIZ)

t
yk(s[), 8 t} = ]|; hk(:t? -+ S)ykﬁ1($ + 80,0,t — :B}d:lf + ay, * (f,,ohkl,}(t) d (A13)

Hence an explicit form of Egs. (A.12) and (A.13) is

k
yk(s0, 8, 1) = Za; * (foghi %% hp—1 *xhps)(t). (A.14)

i=1

Indeed, if k = 1, then we have Eq. (A.12). Let Eq. (A.14) be valid for the function
Yk—1(80, 8,t). Then from Eq. (A.13), we obtain

k-1 .t
60,5,8) = 3, [ hia@acx e -+ he)t = ) + ks (Frghia) 0
i=1
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By using Lemma 1, we arrive at Eq. (A.14). Now by using Eq. (A.14), we can obtain
recurrence relations for computing functions ag(t). It follows from Eq. (A.11) that

k-1 t
ag(t) =Wy * g * Z/ Hi(z)a; * (fzhi* -+ * hg—1)(t — x)dz
i=170

By using Lemma 1, we arrive at Eq. (7). The functions yz(70,t) and yn+1(so,t)
can be written as follows:

k
ye(10,t) = gro * O ai % (fhi% -+ x by * Hi)(2),

i=1

Un+1(80, 1) = Za, (Foohi % -+ % hn) % 1(2). (A.15)

i=1
From Egs. (A.6)-(A.8), (A.14), and (A.15), we obtain the state probabilities. O

Proof of Result 2. By integra.ting Eqs. (4) and (5) with respect to ¢ from 0 to
00, and denoting @; = fu a;(t)dt, we obtain

Ty = Za‘/ F(t)h % - -+ * hx_1 * Hi(t)dt ,

k o0
_ T,,Za,-/ F@)hi -+ hooy » Hi(t)dt.
=1 0

From Eq. (2), we obtain

n k fooe)
= ZZE«]U (F + T f)(t)hi % -+ % hg—y * Hi(t)dt .

k=1 i=1

From the following notation

Hi)(t)—Zh* <% R 1*Hk(t —1—-/!1* <x hy (T)dT,
k=1

we arrive at Eq. (8). o

Proof of Result 3. For the steady-state behavior of the system, the state transition
diagram can be reduced (see Fig. 6). We stick together states k = 1,...,n and
obtain one state (0). Also we stick together states k =1,...,n and obtain another
state (1). Note that at time ¢ — oo the value ¢ is equal to the ratio of the time ¢ to
the mean number of transitions M(t) from one module to another one during the

time interval [0, ], i.e.
I— 1 t 1
= lim =—,
too M(t) w
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Fig. 6. The reduced state transition diagram.

where w is the steady-state probability that at time ¢ — oo one module is executed
and at time ¢ +dt, dt — 0 another module is executed. Let yo(so, s) be the pdf that
the system is in state 0 at time ¢ — oo. Here sy is the residual time to failure and
s is the residual execution time. Let y;(70) be the pdf that the system is in state 1
at time t — oo. Here 7y is the residual time to repair. Then the following system
of integral equations is valid:

w(so,s) = [ " f(a + so)h(z + sy (0)dz + | R

y1(m0) = /D°° g(x +Tu)f0°° Yo(0, s)dsdx .

This system is a special case of system (A.5) as t — co. Its solution is of the form
- 1 (k)
! E z)h* ! dx |
yo(so, 8) To+ T, k:o/U Jso () * hs(z)dz

G(r
y1(70) = Tot T, (_I_o% .

This implies

oo 1 o0 00 -
= - *(k)
w /0 Yo (S0, 8)dso T g /D F(z)h*® (z)dz,

as was to be proved. m|
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